404 research outputs found

    Knowledge discovery for friction stir welding via data driven approaches: Part 2 – multiobjective modelling using fuzzy rule based systems

    Get PDF
    In this final part of this extensive study, a new systematic data-driven fuzzy modelling approach has been developed, taking into account both the modelling accuracy and its interpretability (transparency) as attributes. For the first time, a data-driven modelling framework has been proposed designed and implemented in order to model the intricate FSW behaviours relating to AA5083 aluminium alloy, consisting of the grain size, mechanical properties, as well as internal process properties. As a result, ‘Pareto-optimal’ predictive models have been successfully elicited which, through validations on real data for the aluminium alloy AA5083, have been shown to be accurate, transparent and generic despite the conservative number of data points used for model training and testing. Compared with analytically based methods, the proposed data-driven modelling approach provides a more effective way to construct prediction models for FSW when there is an apparent lack of fundamental process knowledge

    Comparative run-time performance of evolutionary algorithms on multi-objective interpolated continuous optimisation problems.

    Get PDF
    We propose a new class of multi-objective benchmark problems on which we analyse the performance of four well established multi-objective evolutionary algorithms (MOEAs) – each implementing a different search paradigm – by comparing run-time convergence behaviour over a set of 1200 problem instances. The new benchmarks are created by fusing previously proposed single-objective interpolated continuous optimisation problems (ICOPs) via a common set of Pareto non-dominated seeds. They thus inherit the ICOP property of having tunable fitness landscape features. The benchmarks are of intrinsic interest as they derive from interpolation methods and so can approximate general problem instances. This property is revealed to be of particular importance as our extensive set of numerical experiments indicates that choices pertaining to (i) the weighting of the inverse distance interpolation function and (ii) the problem dimension can be used to construct problems that are challenging to all tested multi-objective search paradigms. This in turn means that the new multi-objective ICOPs problems (MO-ICOPs) can be used to construct well-balanced benchmark sets that discriminate well between the run-time convergence behaviour of different solvers

    One PLOT to Show Them All: Visualization of Efficient Sets in Multi-Objective Landscapes

    Full text link
    Visualization techniques for the decision space of continuous multi-objective optimization problems (MOPs) are rather scarce in research. For long, all techniques focused on global optimality and even for the few available landscape visualizations, e.g., cost landscapes, globality is the main criterion. In contrast, the recently proposed gradient field heatmaps (GFHs) emphasize the location and attraction basins of local efficient sets, but ignore the relation of sets in terms of solution quality. In this paper, we propose a new and hybrid visualization technique, which combines the advantages of both approaches in order to represent local and global optimality together within a single visualization. Therefore, we build on the GFH approach but apply a new technique for approximating the location of locally efficient points and using the divergence of the multi-objective gradient vector field as a robust second-order condition. Then, the relative dominance relationship of the determined locally efficient points is used to visualize the complete landscape of the MOP. Augmented by information on the basins of attraction, this Plot of Landscapes with Optimal Trade-offs (PLOT) becomes one of the most informative multi-objective landscape visualization techniques available.Comment: This version has been accepted for publication at the 16th International Conference on Parallel Problem Solving from Nature (PPSN XVI

    A Descent Method for Equality and Inequality Constrained Multiobjective Optimization Problems

    Full text link
    In this article we propose a descent method for equality and inequality constrained multiobjective optimization problems (MOPs) which generalizes the steepest descent method for unconstrained MOPs by Fliege and Svaiter to constrained problems by using two active set strategies. Under some regularity assumptions on the problem, we show that accumulation points of our descent method satisfy a necessary condition for local Pareto optimality. Finally, we show the typical behavior of our method in a numerical example

    Trading-off Data Fit and Complexity in Training Gaussian Processes with Multiple Kernels

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this recordLOD 2019: Fifth International Conference on Machine Learning, Optimization, and Data Science, 10-13 September 2019, Siena, ItalyGaussian processes (GPs) belong to a class of probabilistic techniques that have been successfully used in different domains of machine learning and optimization. They are popular because they provide uncertainties in predictions, which sets them apart from other modelling methods providing only point predictions. The uncertainty is particularly useful for decision making as we can gauge how reliable a prediction is. One of the fundamental challenges in using GPs is that the efficacy of a model is conferred by selecting an appropriate kernel and the associated hyperparameter values for a given problem. Furthermore, the training of GPs, that is optimizing the hyperparameters using a data set is traditionally performed using a cost function that is a weighted sum of data fit and model complexity, and the underlying trade-off is completely ignored. Addressing these challenges and shortcomings, in this article, we propose the following automated training scheme. Firstly, we use a weighted product of multiple kernels with a view to relieve the users from choosing an appropriate kernel for the problem at hand without any domain specific knowledge. Secondly, for the first time, we modify GP training by using a multi-objective optimizer to tune the hyperparameters and weights of multiple kernels and extract an approximation of the complete trade-off front between data-fit and model complexity. We then propose to use a novel solution selection strategy based on mean standardized log loss (MSLL) to select a solution from the estimated trade-off front and finalise training of a GP model. The results on three data sets and comparison with the standard approach clearly show the potential benefit of the proposed approach of using multi-objective optimization with multiple kernels.Natural Environment Research Council (NERC

    A Study of Archiving Strategies in Multi-Objective PSO for Molecular Docking

    Get PDF
    Molecular docking is a complex optimization problem aimed at predicting the position of a ligand molecule in the active site of a receptor with the lowest binding energy. This problem can be formulated as a bi-objective optimization problem by minimizing the binding energy and the Root Mean Square Deviation (RMSD) difference in the coordinates of ligands. In this context, the SMPSO multi-objective swarm-intelligence algorithm has shown a remarkable performance. SMPSO is characterized by having an external archive used to store the non-dominated solutions and also as the basis of the leader selection strategy. In this paper, we analyze several SMPSO variants based on different archiving strategies in the scope of a benchmark of molecular docking instances. Our study reveals that the SMPSOhv, which uses an hypervolume contribution based archive, shows the overall best performance.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    • …
    corecore